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ABSTRACT

A filtering algorithm applicable to image processing is
presented. It was designed using rank-ordered mean
(ROM) estimator to remove an outlier and robust local
data activity estimators to detect the outliers. The
proposed filter effectively removes impulse noise and
preserve edge and fine details. The filter possesses good
visual quality of the processed simulated images and good
quantitative quality in comparison to the standard median
filter. Recommendations to obtain best processing results
by proper selection of the filter parameters are given. The
designed filter is suitable for impulse noise removal in any
image processing applications. One can use it at the first
stage of image enhancement followed by any detail-
preserving techniques such as the Sigma filter at the
second stage.
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1. INTRODUCTION

In practice, the quality of digital images often is not
acceptable to provide reliable data interpretation due to
random noise presence. It is highly desirable to get the
image enhancement providing both effective noise
cancellation/suppression and fine detail preservation.
Linear filters ensure strong attenuation of Gaussian noise
but they fail when data contain the impulse one. On the
other hand, nonlinear filters have become very attractive in
signal and image processing because of their ability to
suppress noise of different nature, in particular, to remove
impulse noise. Nonlinear filtering is also a well-known
detail-preserving method. However, nonlinear filters are
mainly designed to preserve edges of image objects only,
but not fine details such as thin lines and small-scale
objects. In particular, median, Wilcoxon"? and a-trimmed
mean™ filters can remove small size objects considering
them as outliers. As a result, they may to be unable to
preserve fine details. A class of linear median hybrid

(LMH) filters was introduced by Heinonen and Neuvo® to
provide edge preservation with impulse noise reduction®®.
Its subclass, FIR-median hybrid filters (FMH)’, provides
preservation of thin lines as well™ ®. Impulse rejecting
filters® suppress impulse noise effectively and avoid
unnecessary distortions of noise-free pixels. These filters
use different impulse detectors to decide, if the current
pixel is an outlier and should be filtered by some nonlinear
filter or it can be unaltered otherwise. To provide
simultaneous detail preservation, rather complicated
impulse detectors must be used. For example, Mitra et al®
suggested rank-ordered mean (ROM) impulse rejecting
filter with sophisticated fuzzy detector that can be
optimized using image training data.

Besides, Sigma’ and KNN' filters can preserve fine details
well, but their robustness is insufficient to provide desired
suppression of impulse noise™**. Since the standard Sigma
filter does not have any robustness, it is not able to
suppress impulse noise at all. The attempts to get more
appropriate robust versions of two latter mentioned
techniques known. First, the modified locally adaptive
Sigma filter'' possesses some robust features but it does
not perform well for probability of spikes greater than
0.05. Second, the known adaptive KNN filter'”” also
provides insufficient impulse noise suppression. Another
attempt to get better detail preservation is a weighted
median filter” that has better detail preservation but lower
noise suppression in comparison to the standard median

one.

Recently, a robust KNN filter (RM-KNN filter) for
efficient impulse noise suppression and good fine detail
preservation was designed". The filter uses a robust RM
estimator''® derived from R-estimators following from the
statistical rank theory and robust M-estimators. The
limitation of K nearest neighbors is applied to the data
within the filtering window to perform calculations in an
recursive manner. The resulted RM-KNN estimator has an
adaptive nature: the number of K neighbors is adjusted
using some robust estimator of local data activity that acts
as outlier detector. The variants of this filter that use the
different local data activity estimators were presented'*"”
and investigated.
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It was found that this kind of impulse cancellation filter is
very sensitive to the quality of the local data activity
estimator. Some variants of this filter substitute the RM-
KNN estimate by the output of the standard 3x3 median
filter in the case when the local data activity is high that
results that the central pixel of the filtering window is
outlier. In contrast, when the local data activity is too
small, the decision may be made to take the central
window pixel as the filter output, similar to known impulse
rejecting filters®. If the activity has intermediate values, the
filter performs recursive calculations according to the RM-

KNN estimator algorithm".

Unfortunately, the processing with the RM-KNN filter is
slow because of the recursive nature of the robust estimator
used. We found that the computation time may be
significantly reduced eliminating the RM-KNN estimator
when the data local activity estimator, or outlier detector
performs better. Simultaneously, we found by simulations
that the output of the ROM filter produces a more robust
and more accurate estimate in comparison to the median
estimator when the outlier is detected exactly or more or

less reliably.

In this way, we designed a new adaptive impulse rejecting
filter that uses an enhanced local data activity estimator
and behave as an impulse rejecting filter: calculate the
ROM estimate in the case when the data activity is high,
and preserve the image pixels otherwise. In this paper, we
present the designed filter that possesses the cancellation
of impulse noise and preserves well image fine details.

2. PROPOSED IMAGE FILTER

Different impulse noise models were proposed and
described in the literature™ °. We used the following image
degradation model in the case of impulse noise

W17,
pr&sencem .

u(x,y)=nip(elx,5)) , (1)

where e(x,y)=¢ is the vector of an original image,
u(x,)’)=ﬁ is the vector of a distorted image, and
n;, (elx,y)) is the functional

random valuedspike with probabilty P
nin (el 7)) = { e(x, ) otherwise e

We assume that the spikes have uniformly distributed
random values (0..255 for the byte-represented images).
Such assumption makes the problem of impulse noise
removal more complicated, because when spikes are
represented by maximal and/or minimal values only, one
can use some thresholding techniques for their detection
and removal. Besides, the impulse noise described by the
model (1) is more realistic.
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With this model, the problem of impulse noise removal is
to derive a robust filtering algorithm that can be able both
to remove the outliers and to preserve the fine details well.

The output of the ROM filter can be represented as
follows. Let the w(n) is a vector that represents the data

within the 3x3 filtering window that is scanned on the
entire image and is centered at i, j pixel excluding this

pixel, u(i, j), itself:

wln)= {w{1) wi2) w(3) w(4), (5), wl6) w(7) wi8)}  (3)

These samples can be ordered by rank, which defines the
vector

r(n)= ) @) r(3)r(a) () r(6)r ()8} @)

where #(1),7(2)...., r(8) are the elements of w(n) arranged
in ascending order such that r(1)< r(2) S-S r(8). In this

case of even number of data the most robust estimate that
corrltgsponds to a Hoghes-Leman estimate by the rank sign
test” is

n .y rid)+rs

€romM (’=1)=___‘( )2 ( ) )
According to the theory of rank tests, the estimate (5) in
the case when the vector W has odd number of elements
corresponds to the median of the data, which is more
known and widely used in practice.

From the point of view of rank test/estimation theory, the
estimator (5) has the same robust properties as the usual
median estimator. However, taking into account that the
image filter that is based on the estimator (5) excludes the
corrupted central pixel of the filtering window, this
estimator seems to be more robust.

One can expect that the ROM filter, which implements
estimator (5) excluding the central window pixel u(i, j) at

the stage of vector w(n) forming, will perform better than

the standard median filter in the case when the pixel
uli, j) is detected as corrupted properly. Therefore, it is

highly important to detect the outlier reliably. Besides, the
performance of the image rejecting filter depends on the
false outlier detection. Thus, we have to design an outlier
detector, which has to be able both to detect an outlier
well and to minimize the false detection, which is usually
occur in the vicinity of small scale fine details of the
image.

For the purpose of outlier detection, we modified the local
data activity estimator, which was developed and
presented previously”. This estimator is based on the
robust estimate of data scale, the median of absolute



deviations from median (MADM) that is known from the
theory of robust M-estimators®. The calculation scheme
of the previous estimator is described as

oy med{[u(i, /)~ u(i+m, j+ n) }
Stuli, j))= -

(u(i, 1)) MADMC.J) ©)
where med{|u(i, j)- ui+m, Jj +n1 }= MADCP(i, j) is the
median of the of absolute deviations from central filtering
window pixel, k,/=-L.L , and MADM{u(;, )} is
calculated as

MADM{u(i, il= med{ |med{u(i +k, j+ 1)} —uli+m, j+ nl }
™)

We found by simulations that the estimator given by
Eq.(6) performs well at flat image regions, but in the
vicinity of edges it produces the small values. This causes
insufficient outlier removal near the object edges in the
filtered image. To resolve the problem of insufficient
sensitivity of the impulse detector (6) near the edges, it
was modified to produce better results in the filtered
images. The new version of the local data activity
estimator is expressed as

& _[a-MADC uli,
S /)= In(MAD;{{ugi,ggz ®

where the coefficient @ varies the sensitivity of the
estimator. The estimator (8) performs well both in flat
regions and near the image object edges. Unfortunately, it
was found by simulation that the direct use of this
estimator as impulse detector is insufficient and one has to
take into account other features as well. The additional
criterion that we used is the difference between the value
of the central pixel of the filtering window and ROM
estimate (5)

dy—(’.’j):'lu(i’j)“éROM (i’jx (9)

Final!y, the proposed impulse rejecting filter can be
described as a sequence of the experimentally derived
rules, which can be formulated as

é(i, )=
uli, j), if dif(ij) <5
€roM (i, j), if dif (iJ‘) > the median of entire image
orif MADM(j, j) < 1and MADCP{;, j) > 0
else orif S(ij)>1
orif [dif (i, j)- af /in(MADM(i)) > 1
u(i, j) otherwise

(10)
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where &7, j) denotes the output of the proposed filter and

a is the noise sensitivity coefficient. To possess the fine
detail preservation properties, the filter always perform
calculation of the ROM estimate in 3x3 filtering window
meanwhile the scanning window for local data activity
estimator (8) generally can be of the different size.
However, the estimator (8) that estimates the data within
the window of the same 3x3 size produces the better results
as it is shown in the next section.

3. SIMULATION RESULTS

We performed a number of different tests to study the
properties of the proposed algorithm (10) and to compare
it to the standard median filter. The criterion used for the
comparison of the performance of the filters was peak
signal to noise ratio (PSNR), which can be expressed as

2552

Sy - )

PSNR = 10‘ log]o

where e(x,y) denotes the pixels of the original (no

corrupted) image and é(x, y) denotes the pixel of the
filtered corrupted image (restored image).

In simulations, the parameters were varied: the percentage
of the impulse noise, the noise sensitivity coefficient
value, and the size of the sliding window L for
determination of the local median in calculation of the
parameters MADM{u(i, )}, MACP{u(i, j)} that are used

in estimator (8) and in the filter output (10) forming as
well.

To evaluate the deterministic properties of the designed
filter, we performed filtering of the artificial test image
shown in Figure 1 a) by the standard 3x3 median filter and
the proposed one. One can see that in this case of the
artificial image processing the proposed filter performs
very similar to the median one.

To determine the noise suppression properties of the
proposed adaptive ROM filter, the standard 512x512 test
images (“Lena” and “Mandrill”) shown in Figure 2 were
corrupted by the random-valued impulse noise according
to Eq.(1).The percentage of impulse noise was varied
from 1% up to 15%. The filter parameter @ from
Eqs.(8),(10) was varied in a wide range as well as

estimator (8) window size L was varied from 3 to 7.

Table presents the PSNR values, which were obtained
according to (11) on images processed by the proposed
filter with the optimal values of the coefficient a@. The
PSNR values of the standard median filter having
different window size 3x3, 5x5, 7x7 are presented as well.
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Analyzing these values, one can see that the designed
filter performs better and provides significantly larger
PSNR values in comparison to the median filter. It can be
concluded from the analysis of this Table that the optimal
size of the estimator (8) window is 3x3. The PSNR values
of the processed “Mandrill” images is smaller than the
ones of the “Lena” images that is caused by numerous
small scale details contained in the original “Mandnll”

image.

The PSNR criterion does not reflects well the quality of
the filtered images in the sense of fine detail preservation.
That is why it is necessary to check visually both the
detail preservation and absence of outliers after filtering.
Figure 2 illustrates the impulse noise removal by the
designed filter and the median one. Figure 2 (a) shows the
noisy test image “Lena”, Figure 2 (b) presents the output
of the standard 3x3 median filter and Figure 2 (c), (d)
show images processed by the proposed filter having
estimator (8) window size 3x3 and 7x7. Analyzing this
Figure, one can see that the proposed filter possesses bpth
good impulse noise removal and better detail preservation
in comparison to the standard median filter.

4. CONCLUSION

We have presented an adaptive impulse rejecting filter for
image processing applications. Its deterministic and
statistical properties have been analyzed. The proposed
filter possesses good impulse noise removal and preserves
well edge and fine details in the processed images. The
filter optimal parameters have been given. The presented
results demonstrate obviously that the designed filter can
remove impulse noise even from highly corrupted images.
It was established that the optimal impulse detector size as
3x3, the same as the filtering window. This feature allows
to simplify the filtering algorithm. The proposed filter can
be used for impulse noise removal as well as for
information abundance decreasing in image compression
applications.

Because the proposed algorithm is strictly non-linear, it
not changes the noise-free pixels and not introduces any
“new” information. This feature means that the filtered
image can be passed through a once trained classifier
without the necessity of the new training.
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Figure 2. Noisy test and filtering images: (a) test image “Lena” corrupted by 10% impulse random-valued noise; (b) the output of the 3x 3 median filter; (c)
the output of the proposed filter (10) with @ = 0.044 and estimator (8) window size 3x3; (d) the output of the proposed filter (10) with a = 0.044 and
estimator (8) window size 7x7
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Table. Simulation results on impulse noise suppression

Window size Lena 1 Mandrill
of estimator (8) | Impulse noise | Filter sensitivity | PSNR PSNR foJ Filter sensitivity PSNR | PSNR for median

(median filter) | percentage coefficient @ median filter § coefficient @ filter

1 0.034 45.1 36.4 0.019 34.1 23.64
2 0.037 43.1 36.2 0.021 31.7 23.58 |

3 3 0.037 42.] 36.1 0.022 30.6 23.53
4 0.038 41.0 359 | 0.023 29.7 23.48 I

5 0.039 40.2 358 | 0.024 28.8 23.42

6 0.04 39.6 35.6 0.024 28.3 23.38

7 0.042 39.1 35.4 I 0.026 27.9 23.34

8 0.044 38.6 35.3 | 0.026 27.4 23.27

9 0.044 38.1 35.0 0.027 27.0 23.24

10 0.044 37.6 34.8 I 0.027 26.6 23.18

1 0.046 37.0 34.6 0.027 26.3 23.13

12 0.046 36.5 343 0.027 26.0 23.06

13 0.047 36.3 34.2 0.028 25.7 22.98

14 0.047 35.9 33.9 0.028 25.4 22.94

15 0.048 35.5 33.7 0.028 25.2 22.88

1 0.031 43.7 32.4 0.019 34.1 21.27

2 0.031 41.7 32.3 I 0.02 31.8 21.26

5 3 0.035 40.9 32.3 | 0.022 30.1 21.26

4 0.036 39.8 32.2 | 0.022 29.6 21.24

5 0.038 39.2 22 | 0.022 28.8 21.23

6 0.039 38.7 32.1 0.023 28.2 21.23

7 0.04 38.3 32.09 I 0.024 27.8 21.23

8 0.042 37.8 32.02 0.024 27.3 21.21

9 0.041 374 31.97 I 0.025 26.9 21.22

10 0.041 37.0 31.92 0.026 26.5 21.20

1 0.041 36.6 31.81 I 0.026 26.2 21.19

12 0.042 36.2 3115 | 0.026 25.9 21.18

13 0.042 359 31.71 0.027 25.6 21.16

14 0.042 35.6 31.61 0.027 25.4 21.16

15 0.044 35.3 31.56 0.027 25.1 21.13

I 0.027 4238 30.26 | 0.019 33.9 20.59

7 3 0.034 40.0 30.21 0.02 30.4 20.58

5 0.039 38.5 30.16 0.022 28.6 20.58

7 0.041 37.7 30.12 0.024 27.7 20.58

8 0.041 37.3 30.11 0.024 27.2 20.57

10 0.044 36.6 30.03 0.025 26.5 20.56

11 0.047 36.2 29.96 0.025 26.2 20.55

12 0.044 35.9 29.94 0.025 25.9 20.55

13 0.046 35.6 29.95 0.026 25.5 20.54

14 0.046 35.3 29.85 I 0.026 25.3 20.55

15 0.044 35.1 29.84 0.027 25.1 20.53
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